
Building UPS Products 17-1

Chapter 17: Building UPS Products

In this chapter we describe the steps you need to take in order to prepare a
product for inclusion into the UPS framework and then to prepare it for
distribution. We go through the steps for a simple case, then discuss the
additional steps that may be required in more complex situations. Some
sample auxiliary files are provided at the end.

17.1 Basic Steps for Making a UPS Product

In this section we will go through the steps of making a simple, unflavored
product compatible with UPS. The steps we illustrate in this section are also
valid for more complicated situations, but additional steps are generally needed
in those cases. These will be noted later in the chapter. We’ll use the standard
“Hello world” example, with a product hello, version v1_0, of flavor NULL.
The executable, which is a script in this case, consists of the following text:

This is a simple case. You don’t need any Makefiles or scripts on how to build
this product, because it doesn’t get built. It runs on all flavors of UNIX
without modification, so you should declare it with the flavor NULL. It would
be nice to have the $HELLO_DIR/bin directory added to your $PATH to
use the product, and that’s what the setup action will do. The unsetup action
will remove $HELLO_DIR/bin from your $PATH. No configuration or
tailoring is needed, nor are any special actions when the product is declared
current.

The steps you need to complete are:

1) Create a directory hierarchy for the product and its related files.

2) Create a README file.

3) Create a table file in the location you want it to reside (usually either in
the product-specific directory directly underneath your UPS
development database or in the ups directory, if your product has one).

#!/bin/sh

echo "Hello world"

17-2 Building UPS Products

4) Declare the product to your UPS development database with the
development chain so that it doesn’t interfere with other peoples’ work.
Although the product itself doesn’t exist yet, the declaration can be done
and we recommend it at this stage for convenience.

5) Create the product script in the bin directory (or copy it into there).

Building UPS Products 17-3

6) Create man pages (a user’s guide is recommended also).

7) Test the product.

17.1.1 Build the Directory Hierarchy

We will take the product root directory to be hello/v1_0. This product
root directory can sit anywhere in the file system. An appropriate, simple
directory structure underneath the product root directory is as follows:

bin contains the executable script hello

man contains the unformatted man page(s)

catman contains the formatted man page(s)

test contains the test script(s)

A README file should go directly under hello/v1_0. We’ll put the table
file, called hello.table, under the database. Remember that most
products would have more subdirectories and files than shown here, in
particular a ups directory as well as html and/or doc for the user’s
guide.

17.1.2 Create the Table File

For our example, we’ll create the file hello.table and put it in the
product subdirectory of the development database. A simple table file for this
product might look like:

FILE=TABLE

PRODUCT=hello

VERSION=v1_0

#

#---------------------

FLAVOR = ANY

QUALIFIERS = ""

ACTION=SETUP

pathPrepend(PATH, ${UPS_PROD_DIR}/bin, :)

setupEnv()

17.1.3 Declare the Product to your Development UPS

17-4 Building UPS Products

Database

Refer to section 11.1 Declare an Instance for instructions on declaring the
product to your UPS database, or see the reference section 23.5 ups declare. In
particular, note two things:

1) For an unflavored script like this example, declare the flavor specifically
as NULL (using either the -f NULL or -0 option).

2) Declare it with the chain development for your pre-distribution testing
(using the -d option).

For example:

% ups declare -0dz /ups_dev_db -r /ups_dev_prod/hello/v1_0 -m\
hello.table hello v1_0

We recommend declaring at this stage for reasons of convenience and
organization. It allows you to run setup [-d] on the product to make the
$<PRODUCT>_DIR environment variable available.

17.1.4 Copy the Product Executable to the bin Directory

Create the script in the bin directory, or copy or move it to this location.

17.1.5 Provide Product man Pages

See Chapter 39: Creating and Formatting Man Pages for more complete
instructions on creating man pages.

Create the (unformatted) nroff source $HELLO_DIR/man/hello.1. It
may look similar to this:

Use this source to create the formatted man page using the commands1:

% cd $HELLO_DIR/man

% nroff -man hello.1 > ../catman/hello.1

.TH HELLO 1 LOCAL

.SH NAME

hello - print "Hello world" on stdout

.SH SYNOPSIS

.B hello

.SH DESCRIPTION

.B hello

prints the string "Hello world" on standard output.

1. If nroff is not available, run setup groff to get the GNU version.

Building UPS Products 17-5

Once it is formatted, it will look like this:

17.1.6 Test the Product

Now you can setup and test your product. As an example, for our product we
might run:

% setup hello v1_0

% hello

Hello world

% unsetup hello v1_0

% hello

sh: hello: command not found

In many cases, writing a good test script can be rather challenging. Include at
least a basic test to ensure that the product works properly. For our example,
the test script just needs to run our hello program and verify its output, e.g.,:

#!/bin/sh

hello | grep "Hello world" > /dev/null

This will exit with a successful exit code if hello prints Hello world, and
fail otherwise.

HELLO(1) HELLO(1)

NAME

hello - print "Hello world" on stdout

SYNOPSIS

hello

DESCRIPTION

hello prints the string "Hello world" on standard output.

17-6 Building UPS Products

17.2 Specifics for Different Categories of
Products

This section discusses all the steps you need for turning virtually any product
into a UPS product. We start with the simpler cases and finish with the more
complex ones. For all categories of product, if your product has dependencies,
either for building or for execution, you need to have them available to you on
your development system when you build and test the product.

17.2.1 Unflavored Scripts

Unflavored scripts, that is scripts with the flavor NULL, are the simplest form
of UPS product. The example in section 17.1 shows how easy it is to create a
UPS product from an unflavored script. A product like this does not need to be
rebuilt on different architectures, and generally does not need CONFIGURE
and UNCONFIGURE actions or scripts. Some, although very few, unflavored
scripts require INSTALLASROOT actions in the table file to copy specific
files into /usr/local/bin, or to perform similar actions.

We strongly discourage use of /usr/local/bin or any other hard-coded
path; see section 16.1.1 under 16.1 Product Development Considerations and
Recommendations.

17.2.2 Pre-built Binaries

Many third-party products obtained from a vendor or downloaded from the
Web are binary images without source code. When you go to a vendor’s web
site, you will often find separate pre-built binaries for several UNIX operating
systems/releases. Note that they may use slightly different terminology than
we do to refer to the different flavors.

Generally, to run products that consist of executables (as opposed to libraries,
for example), you just need to add the executable directories to your $PATH
after downloading. To make a product compatible with UPS, you should
provide a table file that modifies the $PATH, a README file and some
documentation. If the vendor provides examples and/or any other user files,
include them. Most products distributed in this manner include
documentation, either man pages or html files, and sometimes both.

Follow this general procedure:

• Create one master product root directory. Underneath it, create the
product directory structure, including at least a bin directory.

Building UPS Products 17-7

• Create the appropriate product subdirectories (html for Web
documents, doc for PostScript or other forms of documentation, man
and/or catman for unformatted and/or formatted man pages,
respectively) and copy the vendor’s documentation into them. You can
opt to leave the documentation directory structure the same as the way it
is provided.

• Create a README file in the product root directory with relevant
information such as where this product was obtained, by whom, any
licensing restrictions or other notes, and so on.

• Create a table file. It can be modified later as needed, but at least a
rudimentary table file must exist in its actual location before declaring the
product. In most cases, within the table file, the product instance’s bin
directory should be added to the $PATH within a SETUP action, e.g.,:
ACTION=SETUP

pathPrepend(PATH, ${UPS_PROD_DIR}/bin, :)

• Create other ups directory scripts and data files as needed in the ups
subdirectory. (For most pre-built binaries you shouldn’t need any.)

• Declare the product to a UPS database with the chain development (-d)
and no flavor (-f NULL).

Now it’s time to create areas for each flavor of the product that you plan to
install.

• Duplicate the product root directory tree once for each flavor of binary
you plan to install (using tar or other appropriate tool).

• For each flavor, copy the pre-built binary into the appropriate bin
directory. This usually involves unwinding a tar file.

• Declare the suite of product instances (one per flavor) to your UPS
development database for testing before you distribute them (strongly
recommended!).

• Set permissions for all readable files to a+r. Set permissions for all
scripts and other executable files to a+x.

• Test each one out!

17-8 Building UPS Products

17.2.3 Products Requiring Build (In-House and
Third-Party)

Most locally developed products, and many vendor-supplied products, are
distributed as source code which must be rebuilt for each OS flavor. We are
trying to get away from UPS-packaging vendor-supplied products, however,
we provide instructions in case you need to do so.

If you are building a product which was obtained from an outside source, you
may not have control over the product directory hierarchy. Some outside
products include configuration options (via Makefiles) to specify where the
resulting libraries and/or images should reside, but in other cases you must
give a hard-coded path to the final output file. In the latter cases, when it is
absolutely necessary, you may need to use UPS as a “bookkeeping” wrapper
and common point of distribution. Contact uas-group@fnal.gov for assistance.

If you are developing the product yourself, you should follow these guidelines:

• Store the master source code (and all the auxiliary files) in a CVS code
repository (or other code-version management system) according to your
group’s policies.

• Use a sensible product directory hierarchy (src, lib, bin, html,
doc, ups subdirectories). See section 16.3 for recommendations.

• If the product needs to know its location (or that of its include files or
auxiliary files), use the local read-only variable ${UPS_PROD_DIR} or
the run-time environment variable $<PRODUCT>_DIR rather than a
hard-coded path. Make sure that your table file sets this variable.

Preparation for Rebuilding Any Product

For any product, you first need to create the infrastructure. Much of the work
needs to be done only once, and is reused for each flavor of the product that is
built:

• Create the master source product directory hierarchy.

• Create/copy ups directory scripts, data files, and auxiliary files as
needed in the ups subdirectory.

• Create at least a basic table file (include QUALIFIERS=“BUILD” or
“build”, and set $<PRODUCT>_DIR under the SETUP action)

• Declare the product with the chain development and the flavor
NULL+SOURCE-ONLY to a local UPS database. Make sure that all UPS
product requirements are declared properly.

• Run setup -d -q "?build?BUILD" on the product to set
$<PRODUCT>_DIR.

• Create source code in the src directory, or copy it there.

Building UPS Products 17-9

• Create a Makefile in the product root directory, ${UPS_PROD_DIR}
(or simply write a build script if a Makefile is overkill) to use for building
the product binaries. For reproducibility, make sure that you include all
the steps to go from raw source to the completed product. It is a good idea
to have the Makefile or build script run a test suite whenever possible.

• Modify the table file for SETUP and UNSETUP actions.

• Create documentation in the appropriate directories (html for Web
documents, doc for PostScript or other forms of documentation, man
and/or catman for unformatted and/or formatted man pages). Modify
table file to note the locations.

If the documentation came from the vendor in other locations, you don’t
need to move it; just indicate the locations in the table file.

• Keep track of any relevant information in a
${UPS_PROD_DIR}/README file. This information should include
where the source code came from, any tweaks that were necessary to
make it build, the node names and OS versions that were used to build the
binaries, known bugs, and so on.

• Set permissions to a+x for scripts and other executables, and to a+r
for readable files.

Steps for Rebuilding a Product

Once you have created the product structure along with all of the support files,
you will need to get down to the business of actually building the product
images. If you’re planning on redistributing this product to a wider audience
than just your machine, you must be careful in selecting a build node. The
build nodes should have appropriate levels of compilers, OS, and other
products required for building the given product.

We recommend that you create separate build areas, one for each target flavor,
so that the different flavors of binary files do not get mixed up. Once you have
completed the preparation described above, complete these steps:

• Duplicate this source tree once for each target platform, using the file
naming conventions that have been established for your build cluster (use
tar or other appropriate tool, or you may need to check it out from version
control).

• Declare these new directory trees each with its target flavor.

Then for each of the target flavors:

• Declare the product to the database using the flavor, optionally a chain of
-d, and the case-appropriate qualifier BUILD or build (e.g., -q
BUILD). If this is a product which creates links, make sure they were
created properly and that each link points to the correct parent product
root directory!)

17-10 Building UPS Products

• Setup the product instance of that flavor in order to set
$<PRODUCT>_DIR to the right product root directory. Use both the -d
(for development chain, if declared) and -q BUILD (or -q build)
options (i.e., setup -dq BUILD <product>).

• Invoke the product’s build procedure or Makefile to rebuild the product
from scratch.

If this is a product which is building files in a hard-coded path, check to
make sure that these files are being created properly. They should reside
under the ${UPS_PROD_DIR} area, but via the symbolic links, they
should appear to also reside under the hard-coded directory.

17.2.4 Overlaid Products

An overlaid product gets distributed and maintained in the product root
directory of its main product. For example, the overlaid products cern_bin,
cern_ups, cern_lib, etc., all reside in the product root directory for the main
product cern. A patch is another good example of the use of overlaid products.
The set of products overlaid on a main product is collectively referred to as the
overlay.

A special keyword, _UPD_OVERLAY, is provided for inclusion in the table
file of each overlaid product1. _UPD_OVERLAY takes as its value the main
product name in double quotes. Its presence indicates that the product is an
overlaid product maintained in the root directory of the main product listed as
the keyword's value. For example, the table files for the products cern_bin,
cern_ups, and cern_lib would contain the following keyword line:

_UPD_OVERLAY = "cern"

UPD would then use cern as the product name when determining the root
directory.

In addition to including all the overlaid products as dependencies of the main
product, we recommend including the main product as a dependency of each of
the overlaid products. This allows separate installation of each of the pieces.
Circular dependency lists are allowed in UPS.

1. UPS regards _UPD_OVERLAY as a user-defined keyword, but it is defined within
UPD.

Building UPS Products 17-11

17.3 Sample Auxiliary Files

17.3.1 README

Following is the README file for the teledata v1_0 product. It has been
edited for brevity, but shows the kinds of information that are important to
include:

This is the teledata product.

It contains the HTML files and data files for the Fermilab
online

telephone directory.

The files in $TELEDATA_DIR/data are the data files, read by
the

teleserver product. These files are updated daily.

The files in $TELEDATA_DIR/www are the html files, displayed
by

the web server. These files are also updated daily; the
A-Z.html

files are rebuilt from raw data, and the index.html,
first.html

and last.html are given a new date stamp.

The HTML files must be visible from the web server's default
HTML

area. This is accomplished via links in
/usr/local/products

(managed by "ups configure" and "ups declare -c") and links
in

the system default HTML directory (handled by the web

administrator). The /usr/local/products links will be
created

automatically when the product is declared. The web

administrator must create the link in the top-level
"default"

HTML directory, via something similar to

$ cd /path/to/default/html/area

$ ln -s /usr/local/products/teledata/current/www
telephone

This allows the URL

17-12 Building UPS Products

http://www-tele.fnal.gov/telephone/

to map to the file

$TELEDATA_DIR/www/index.html

...

The structure of the teledata product is:

$TELEDATA_DIR - parent product directory

ups - directory containing ups support files

configure, unconfigure - manage the
/usr/local/products/teledata links

current, uncurrent - manage the
/usr/local/products/teledata/current links

INSTALL_NOTE - link to this file

data - directory containing data files

RAWDATA - raw unprocessed data file

NASTDATA - processed data file

email - gdbm index file, keyed on email address

...

For further information, see the teleserver product, or
please

contact support person name, telephone and email.

17.3.2 INSTALL_NOTE

The following is a sample INSTALL_NOTE from the netscape v4_5
product:

Fermilab installation of Netscape

The Fermilab ups product imposes certain structure upon

its products. To this end, a wrapper has been provided

which will assist in the downloading and re-structuring

of netscape for use at Fermilab.

To use this tool:

1. Upd install the install_netscape product.

2. setup install_netscape.

3. cd to $INSTALL_NETSCAPE_DIR and execute the

netscape_install script. The optional

argument specifies the directory in which

to install netscape. The default is to

Building UPS Products 17-13

install and declare netscape in

$INSTALL_NETSCAPE_DIR.

17.3.3 RELEASE_NOTES

The following is a sample RELEASE_NOTES file from UPS v4_3. Notice
that for each release of the product, the new update information gets appended
to the previous RELEASE_NOTES file contents so as to retain all the update
information:

UPS v4_3b

Fixed bug in upsact when doing WriteCompileScript for a
product already setup.

EnvSetIfNotSet now has no undo.

Better handling of envremove/pathremove, especially for
cases where the value parameter uses backticks.

Better handling of exeAccess, eliminating the use of 'hash'
in the Korn shell family, and printing error messages as
appropriate.

UPS v4_3a

Fixed problem with ups verify outputting incorrect
information about chains associated

with versions.

UPS v4_3

There are new template files in the ups area for the dbconfig
file and the upsdb_list file.

Many fixes were made to the configuration script,
particularly for NT.

When UPS uses dropit, it will now always use the '-e' switch,
for an exact match.

...

17-14 Building UPS Products

